LD-LP-LL-LC Safety Switches

with separate actuator

- Metal housing or technopolymer housing, from one to three conduit entries
- Protection degree IP67
- 9 contact blocks available
- 6 stainless steel actuators available

■ M12 connector versions available
■ Gold-plated silver contacts option

Options \& Ordering Codes
Note: The feasibility of a code number does not mean the effective availability of a product

Specifications

Mechanical interlock, coded:
Coding level:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient operating temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:

PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
Low acc. to EN ISO 14119

2,000,000 for NC contacts

20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
1 million operating cycles ${ }^{1}$
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
(1) One operation cycle means two movements, one to close and one to open contacts, as defined in EN 60947-5-1.

Housing

LP series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
LD, LL and LC series: metal housing, baked powder coating.
Metal head, baked powder coating.

LD, LP, LC series: one threaded conduit entry: LL series - three threaded conduit entries: Protection degree:

M20x1.5 (standard)
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

In conformity with standards

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119,
EN ISO 12100, IEC 60529, EN 60529, EN ISO 13850, EN 418, UL 508, CSA 22.2 No. 14 .

In conformity with requirements requested by
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and EMC Directive 2004/122/EC.

Positive contact opening in conformity with standards

IEC 60947-5-1, EN 60947-5-1.

Cable cross section (flexible copper wire)

Contact blocks C20, C21, C22, C33, C34:
Contact blocks C5, C6, C7, C9:

$$
\begin{array}{ll}
\min .1 \times 0.34 \mathrm{~mm}^{2} & (1 \times \text { AWG } 22) \\
\operatorname{max.} 2 \times 1.5 \mathrm{~mm}^{2} & (2 \times \text { AWG 16) } \\
\min .1 \times 0.5 \mathrm{~mm}^{2} & (1 \times \text { AWG 20) } \\
\max .2 \times 2.5 \mathrm{~mm}^{2} & (2 \times \text { AWG } 14)
\end{array}
$$

Electrical data

	Thermal current (Ith): Rated insulation voltage (Ui): Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): Conditional short circuit current: Protection against short circuits: Pollution degree:	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks C20, C21, C22, C33, C34) kV 4 kV (contact blocks C20, C21, C22, C33, C34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 (50/60 Hz)			
			Ue (V)	250	400	500
			le (A)	6	4	1
			Direct current: DC13			
			Ue (V)	24	125	250
			le (A)	6	1.1	0.4
	Thermal current (lth): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	$\begin{aligned} & 4 \mathrm{~A} \\ & 250 \mathrm{Vac} 300 \mathrm{Vdc} \\ & \text { type gG fuse } 4 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 ($50 / 60 \mathrm{~Hz}$)			
			Ue (V) 24 le (A) 4 Direct current: DC13 Ue (V) 24 le (A) 4		120	250
					4	4
					125	250
					1.1	0.4
	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits: Pollution degree:	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 (50/60 Hz)			
			Ue (V)	24		
			le (A)	2		
			Direct	t: DC13		
			Ue (V)	24		
			le (A)	2		

Description

These safety switches are ideal for controlling gates, sliding doors and other guards which protect dangerous parts of machines without inertia. The stainless steel actuator is fastened to the moving part of the guard, so it is removed from the switch on every opening of the guard. The switch mechanism guarantees that removing the actuator forces the positive opening of the electrical contacts. Easy to install, these switches can be applied to any kind of protection (with hinge, sliding and removable ones). Besides, the possibility to actuate the switch only with its actuator guarantees that the machine can be restarted only when the guard has been closed. Made of rugged materials and with oversized thickness, these switches are designed for the use on heavy guards.

Orientable heads

Removing the two fastening screws (in all switches), the head can be rotated in 90° steps. In this way it is possible to actuate the switch from 5 different directions.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to IEC 60529.
They can therefore be used in all environments where the maximum protection of the housing is required.

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain their features under such conditions, widening the installation possibilities.

Wide-ranging actuator travel

The head of this switch is equipped with an actuator with a wide range of travel. In this way the guard can oscillate along the direction of insertion (4.5 mm) without causing unwanted machine shutdowns. This extensive travel movement is available with all actuators, in order to ensure maximum device reliability.

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered with using common tools.

Laser engraving

All devices are indelibly marked by a dedicated laser system that allows the marking to be also suitable for extreme environments. As this system does not use labels, the loss of plate data is prevented and the marking is more resistant over time.

Selection diagram

How to read travel diagrams

All measures in the diagrams are in mm

IMPORTANT:
NC contact has to be considered with inserted actuator. In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Operate the switch at least with the positive opening force, indicated between brackets below each article, aside the minimum force value.

Utilisation limits

Do not use where dust and dirt may penetrate in any way into the head and deposit there, in particular where metal dust, concrete or chemicals are spread. Adhere to the EN ISO 14119 requirements regarding low level of coding for interlocks. Do not use in environments where explosive or flammable gas may be present.

Stainless steel actuators
IMPORTANT: These actuators can be used with items of the LD, LP, LL, LC and PS series only (e.g. LDC6JK).
Low level of coding acc. to EN ISO 14119.

The actuator can flex in four directions for applications where the door alignment is not precise.

Actuator adjustable in one direction for doors with reduced dimensions.

Accessories

