LD-LP Safety Switches

with lock and separate actuator

- Metal housing or technopolymer housing, one conduit entry
- Protection degree IP67
- 9 contact blocks available
- 6 stainless steel actuators available
- Assembled M12 connector version available
- Gold-plated silver contacts option
- Strong actuator locking (1000 N)
- Release of the actuator by key

C (U) us Approval UL: E146236

Options \& Ordering Codes

Specifications

For safety applications up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
$\mathrm{B}_{10 \mathrm{~d}}$:
Service life:
Ambient operating temperature:
Max. actuation frequency:
Mechanical endurance.
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $\mathrm{F}_{1 \text { max }}$
Max. holding force F_{z}
Max. backlash of the actuator:
Actuator extraction force:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
Low acc. to EN ISO 14119
1,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles ${ }^{1} /$ hour
500,000 operating cycles ${ }^{1}$
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
1000 N acc. to EN ISO 14119
770 N according to EN ISO 14119
4.5 mm

30 N

Housing

LP series housing made of glass fiber reinforced technopolymer, self-extinguishing, shock-proof and with double insulation
LD series: metal housing, baked powder coating.
Metal head, coated with baked epoxy powder.
One threaded conduit entry:
Protection degree:
IP67 acc. to EN 60529 with cable gland having equal or higher protection degree

Cross section of the conductors (flexible copper wire)

Contact blocks C20, C21, C22, C28, C29, C30, C33, C34:	$\min .1 \times 0.34 \mathrm{~mm}^{2}$
	$(1 \times$ AWG 22)
Contact block C18:	$\min .1 \times 1.5 \mathrm{~mm}^{2}$
	$(2 \times \mathrm{AWG} 16)$
	$\max .2 \times 2.5 \mathrm{~mm}^{2}$
$(1 \times$ AWG 20	$(2 \times$ AWG 14)

Electrical data

	Thermal current (th):
	Rated insulation voltage (Ui):
	Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$) :
	Conditional short circuit current:
	Protection against short circuits:
	Pollution degree:

Utilization category
In conformity with requirements requested by
Low Voltage Directive 2006/95/EC, Machinery Directive 2006/42/EC and

Positive contact opening in conformity with standards
 IEC 60947-5-1, EN 60947-5-1.

EMC Directive 2004/108/EC.

In conformity with standards

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, BG-GS-ET-15, UL 508, CSA 22.2 No. 14 .

	Thermal current (th):		Alternating current: AC15 (50/60 Hz)			
		4 A	Ue (V)	24	120	250
	Rated insulation voltage (Ui):	250 VAC 300 VDC	le (A)	4	4	
	Protection against short circuits:		Direct	DC		
	Pollution degree:	3	Ue (V)	24	125	250
			le (A)	4	1.1	0.4

	Thermal current (Ith): Rated insulation voltage (Ui): Protection against short circuits Pollution degree:

Alternating current: AC15 $(50 / 60 \mathrm{~Hz})$	
Ue (V)	24
le (A)	2
Direct current: DC13	
Ue (V)	24
le (A)	2

Working cycle (LPC28MR-F1)

The switch is fixed to the machine body (A), while the stainless steel actuator is fastened to the guard (B). Once installed, the switch will firmly lock the actuator. To remove the actuator, it is necessary to unlock the key locking device rotating the key (C). When the actuator is removed, the key cannot be put into the initial position anymore. In the example below is shown how it is possible to have contacts moved by the key lock or by the actuator and how it is possible to install the switch inside the machine, keeping externally visible only the release device.

With extracted actuator the lock cannot be turned to the initial position

Closed protection Actuator locked

Description

This type of switch can be used on fences or where protection against unauthorised entry is required. They have been designed for the control of large protected areas where operators may physically enter. Supplied with a strong lock, the actuator can be removed from the head only after a complete rotation (180°) of the locking key. During the key rotation, electrical contacts are switched, and the actuator will be released only after the NC contacts are positively opened. Contacts activated by the key locking device will be reset to the initial position only with the actuator inserted and the key in the locking position. It is impossible to rotate the key when the key locking device is unlocked and the actuator is removed (C state). These switches are considered interlocks with locking in accordance with ISO 14119, and the product is marked on the side with the symbol shown (right).

Orientable head and release device

The head can be quickly turned to each of the four sides of the switch by unfastening the two fixing screws.
The auxiliary key release device can be rotated in 90° steps enabling the switch to assume 32 different configurations.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and have passed the IP67 immersion test acc. to IEC 60529, and therefore can be used in environments where increased protection is required.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several doors are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked doors in their position with a retaining force of $30 \mathrm{~N} \sim$, stopping any vibrations or gusts of wind from opening them.

Laser engraving

All devices are indelibly marked by a dedicated laser system that allows the marking to be also suitable for extreme environments. As this system does not use labels, the loss of plate data is prevented and the marking is more resistant over time.

Actuator regulation zone

The head of this switch has been designed to have a certain amount of movement tolerance for oscillation along the direction of insertion without causing unwanted machine shutdown caused by switch activation. This feature is available with all door interlock actuators, in order to ensure maximum device reliability.

Contact blocks

Contact blocks are supplied with captive screws and finger protection, and the twin bridge contacts with double interruption offer increased contact reliability.

Extended temperature range

This range of switches is also available in a special version with an ambient operating temperature range of $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
They can be used for applications in cold stores, sterilisers and other devices with low temperature environments. Special materials that have been used to realize these versions, maintain their features under such conditions, widening the installation possibilities.

Safety screws for actuators

As required by ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered with using common tools.

Working cycle steps

Contact positions related to switch states

Operating state		state A	$\begin{gathered} \text { state } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { state } \\ \text { C } \end{gathered}$
Actuator		Inserted and locked	Inserted and released	Extracted
Lock		Closed	Open	Open
Contact blocks				
$\begin{aligned} & \text { LDC18MR } \\ & \text { 1NC }+1 \text { NO controlled by } \\ & \text { the lock } \end{aligned}$	$\begin{aligned} & \text { c } \\ & \underset{6}{6} \end{aligned}$	$\begin{aligned} & 11-\left\llcorner_{12}\right. \\ & 23-24 \end{aligned}$	$\begin{gathered} 11 \longrightarrow-12 \\ 23 \longrightarrow \\ \hline \end{gathered}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 23 \longrightarrow \quad-1 \end{aligned}$
$\begin{aligned} & \text { LDC20MR } \\ & \text { 2NC }+1 \text { NO controlled by } \\ & \text { the lock } \end{aligned}$	$\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { c } \end{aligned}$	$\begin{gathered} 11-七_{12} \\ 21-\left\llcorner_{22}\right. \\ -34 \end{gathered}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow 22 \\ & 33 \longrightarrow 34 \end{aligned}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow 22 \\ & 33 \longrightarrow 34 \end{aligned}$
LDC21MR 3NC controlled by the lock	$\begin{aligned} & \text { c } \\ & \underset{\sim}{6} \end{aligned}$	$\begin{gathered} 11-\left\llcorner_{12}\right. \\ { }_{31}-\left\llcorner_{22}\right. \\ \iota_{32} \end{gathered}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow \quad 22 \\ & 31 \longrightarrow 32 \end{aligned}$	$\begin{aligned} & 11 \square \\ & 21 \longrightarrow \quad 12 \\ & 31 \square \end{aligned}$
$\begin{aligned} & \text { LDC22MR } \\ & \text { 1NC }+2 \text { NO controlled by } \\ & \text { the lock } \end{aligned}$	$\begin{aligned} & \text { c- } \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & 11-七_{12} \\ & 23-24 \\ & 33- \end{aligned}$		
LDC28MR 1NO＋1NC controlled by the lock 1NC controlled by the actuator	$\%$ －•・ロ \cdots	$\begin{gathered} 11-\left\llcorner_{12}\right. \\ 21-\left\llcorner_{22}\right. \\ 33-34 \end{gathered}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow \\ & 33 \longrightarrow \longleftarrow \end{aligned}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow 22 \\ & 33 \longrightarrow 34 \end{aligned}$
LDC29MR 2NC controlled by the lock 1NC controlled by the actuator		$\begin{gathered} 11-\left\llcorner_{12}\right. \\ { }_{21}-\left\llcorner_{22}\right. \\ \iota_{32} \end{gathered}$	$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow 22 \\ & 31 \longrightarrow \quad 32 \end{aligned}$	$\begin{aligned} & 11 \square \\ & 21 \square \\ & 31 \square \\ & \square \end{aligned}$
LDC30MR 1NC controlled by the lock 2NC controlled by the actuator	\odot ■f ■f	$\begin{gathered} 11-\left\llcorner_{12}\right. \\ { }_{31}-\left\llcorner_{22}\right. \end{gathered}$		$\begin{aligned} & 11 \longrightarrow 12 \\ & 21 \longrightarrow \quad 22 \\ & 31 \longrightarrow 32 \end{aligned}$

The key can be extracted from the lock with blocked or released actuator

Selection diagram

Diagrams for LD Series

\begin{tabular}{|c|c|c|}
\hline \& Technopolymer housing \& Metal housing

\hline Contact type:
$$
\mathbf{L}=\text { slow action }
$$ \& Without actuator, supplied with two keys \& Without actuator, supplied with two keys

\hline \square = slow action

Contact blocks \& \&

\hline \multirow[t]{2}{*}{C18 L} \& LPC18MR $\quad \rightarrow$ 1NO+1NC \& LDC18MR $\quad \rightarrow$ 1N0+1NC

\hline \& \& $$
\bigodot \varlimsup_{23-24}^{11-12} \underbrace{0^{\circ}}_{120^{\circ}} e^{95^{\circ}} e^{180^{\circ}}
$$

\hline \multirow[t]{2}{*}{C20 L} \& LPC20MR $\quad \rightarrow$ 1NO+2NC \&

\hline \& \&

\hline \multirow[t]{2}{*}{C21 L} \& LPC21MR $\quad \rightarrow$ 3NC \& LDC21MR $\quad \checkmark$ 3NC

\hline \& \&

\hline \multirow[t]{2}{*}{C22 L} \& LPC22MR $\quad \rightarrow$ l ${ }^{\text {2 }}$ N +1 NC \& LDC22MR $\quad \rightarrow$ 2NO+1NC

\hline \& \&

\hline \multirow[t]{2}{*}{C28 L} \& LPC28MR $\xrightarrow{\text { d }}$ - 1NO+2NC \& LDC28MR $\quad \leftrightarrow$ 1NO+2NC

\hline \& \&

\hline \multirow[t]{2}{*}{C29 L} \& LPC29MR $\quad \rightarrow$ UNC \& LDC29MR $\quad \rightarrow$ 3NC

\hline \& \&

\hline \multirow[t]{2}{*}{C30 L} \& LPC30MR $\quad \checkmark$ O 3 C \& LDC30MR $\quad \checkmark \leftrightarrow 3 N C$

\hline \& \&

\hline \multirow[t]{2}{*}{C33 L} \& LPC33MR $\quad \checkmark \leftrightarrow 1 \mathrm{NO}+1 \mathrm{NC}$ \& LDC33MR $\quad \rightarrow$ H ${ }^{\text {N }}$ O+1NC

\hline \& $$
\int_{-}^{13.14}{ }_{21-22}^{14} \underbrace{95^{\circ}}_{120^{\circ}} \oplus^{180^{\circ}}
$$ \& \[

\int_{-1}^{13.14} $$
\begin{gathered}
0122 \\
25^{\circ} \\
120^{\circ}
\end{gathered}
$$ \Theta^{180^{\circ}}
\]

\hline \multirow[t]{2}{*}{C34 L} \& LPC34MR $\quad \rightarrow$ 2NC \& LDC34MR $\quad \checkmark \leftrightarrow$ 2NC

\hline \& \& $$
\int_{21-22}^{11-12}{ }^{0} \underbrace{95^{\circ}} \Theta^{180^{\circ}}
$$

\hline Min. force \& $30 \mathrm{~N}(40 \mathrm{~N} \Theta)$ \& $30 \mathrm{~N}(40 \mathrm{~N} \Theta)$

\hline
\end{tabular}

Legend: Θ With positive opening according to EN 60947-5-1, \longrightarrow interlock with lock monitoring in accordance with EN ISO 14119

How to read travel diagrams

IMPORTANT:

In this example the initial status is with the inserted actuator and the key turned to the lock position, to lock in the actuator. This example has 1NC+1NO contacts that are activated by the key (\ddagger) and 1NC by the actuator (σ).
Key:
Turning the key 90° will result in the NC contact to open, a further 30° turn will result in the NO contact to close.

Actuator:

When the actuator is pulled for extraction by 8 mm the NC contact opens, a further 1.5 mm ensures the positive opening of the contact. The symbol (∞)denotes the fully extracted actuator.

Stainless steel actuators

IMPORTANT: These actuators can be used with items of the LD, LP, LL, LC and LS series only (e.g. LDC18MR).
Low level of coding acc. to EN ISO 14119.

The actuator can flex in four directions for applications where the door alignment is not precise.

Actuator adjustable in two directions for doors with reduced dimensions.

[^0]Universal actuator AC-KEYF8
IMPORTANT: These actuators can be used with items of the LD, LP, LL, LC and LS series only (e.g. LDC18MR). Low level of coding acc. to EN ISO 14119.

Joined and two directions adjustable actuator for doors with reduced dimensions.
The actuator has two couples of fixing holes and it is possible to rotate by 90° the actuator-working plan.

Accessories

[^0]: Actuator adjustable in one direction for doors with reduced dimensions.

